tag

编程算法

提示:公众号展示代码会自动折行,建议横屏阅读 TXRocks是TXSQL适配RocksDB的版本,基于Facebook开源的MySQL进行了深度定制和优化。相对于当前线上常用的InnoDB引擎,RocksDB的主要优势是空间占用少。主要原因有两点,第一:RocksDB的数据页是压缩后append方式

“如果说互联网是优化信息的存储和传输方式,提升生产要素之间的运行效率;人工智能便是对各个生产要素的升级。” 本人初入职场便从事TOB相关工作,参与了tbds等大数据平台的产品建设,近两年逐渐接触人工智能;目前主要负责TI-ONE机器学习平台,结合自己工作经验,在这里分享一些关于ML产品的思考和实践。

今天要介绍的是一筐黄瓜。 这可不是一筐普通的黄瓜。它们是由腾讯人工智能实验室AI Lab团队的成员协同国内外农业专家和学生,使用人工智能AI在荷兰一间温室里种植出来的黄瓜。 它们和我们平常在菜市场买的黄瓜有什么区别呢? 放大了图片看看... ... 其实也没啥区别。依然是大家熟悉的黄瓜,可蒸煮,可煎

导读:朱华,腾讯数据中心技术发展中心总监,中国工程建设标准化协会数据中心技术委员会副主任委员,中国通信标准化协会开放数据中心委员会数据中心工作组组长,荣获中国工程建设标准化协会颁发的2018数据中心青年科技人才奖。11月30日,朱华在2018数据中心年度峰会上发表了演讲,以下为演讲内容。 谈起数据中

​ 11月1日,腾讯AI Lab在南京举办的腾讯全球合作伙伴论坛上宣布正式开源“PocketFlow”项目, 该项目是一个自动化深度学习模型压缩与加速框架,整合多种模型压缩与加速算法并利用强化学习自动搜索合适压缩参数,解决传统深度学习模型由于模型体积太大,计算资源消耗高而难以在移动设备上部署的痛点,

11月1日,腾讯AI Lab在南京举办的腾讯全球合作伙伴论坛上宣布正式开源“PocketFlow”项目, 该项目是一个自动化深度学习模型压缩与加速框架,整合多种模型压缩与加速算法并利用强化学习自动搜索合适压缩参数,解决传统深度学习模型由于模型体积太大,计算资源消耗高而难以在移动设备上部署的痛点,同时

人工智能时代,一项新技术的诞生、应用和落地,幕后都离不开这样的一群先行者: 在未知的领域不断的试错,不停的迭代,解决各种问题。这些幕后的故事大多鲜为人知。 2018 AI先行者大会 这一次,先行者们从幕后到台前, 为大家带来业内最新的技术及应用落地:云计算与大数据、机器学习ML、自然语言处理NLP…

作者:邬嘉文,精通用户研究,推荐算法,Growth用户运营,结果在微信都用不上。 从市场调查转行腾讯做互联网,那时候还不懂什么是运营。记得有一份大神级PPT分享到:运营就是如何吸引用户,并活跃用户。当时头脑一响,觉得说得很对,并深深记住了7年。因为刚进入互联网公司,那时候对互联网岗位设置感觉有点陌生

今日,腾讯AI Lab 宣布开源大规模、高质量的中文词向量数据。该数据包含800多万中文词汇,相比现有的公开数据,在覆盖率、新鲜度及准确性上大幅提高,为对话回复质量预测和医疗实体识别等自然语言处理方向的业务应用带来显著的效能提升。针对业界现有的中文词向量公开数据的稀缺和不足,腾讯 AI Lab此次开

导语:腾讯AI Lab机器学习中心今日宣布成功研发出世界上首款自动化深度学习模型压缩框架——PocketFlow,并即将在近期发布开源代码。这是一款面向移动端AI开发者的自动模型压缩框架,集成了当前主流(包括腾讯AI Lab自研)的模型压缩与训练算法,结合自研超参数优化组件实现了全程自动化托管式的模

前言 在保证数据安全的基础上,保持服务的持续可用,是核心业务对底层数据存储系统的基本要求。业界常见的1主N备的方案面临的问题是“最大可用(Maximum Availability)”和“最大保护(Maximum Protection)”模式间的艰难抉择: “最大可用”模式,表示主机尽力将数据同步到备

前言 本文介绍我们在推荐系统领域的大规模参数学习研究. 问题的起源是探究给每一个用户学习一个 ID 层级的表征, 而在千万量级的业务上, 学习如此特征将会牵涉到超十亿规模的参数学习. 对此我们根据推荐算法的特点, 实现了一个无需使用参数服务器, 在普通 Spark 能够运行的支持大规模参数学习的 F

| 导语 同一催费场景,挖掘人群特点,不同人群触达不同文案与图片提升转化 背景 “尊敬的XXX用户,您的话费已不足10元。为了您的正常使用,请及时充值。” ——移动公司 “温馨提示:XXX先生/小姐,您的住房贷款将于11月5日扣款,请在此账号中存足款项。” ——家银行 就算是在尊敬的称谓,就算是再温

作者简介 缘起 升级到Pike版本以后,服务反应非常慢,因此去追查原因。K版和P版的速度对比,如下: Kilo版(0.077s): Pike版本(0.480s): Pike版本的速度是Kilo版本的6倍左右,考虑到Keystone的请求,在OpenStack中非常关键,所以需要优化。 追查过程 没有

提示:公众号展示代码会自动折行,建议横屏阅读 摘要 本文(有码慎入)主要介绍Linux任务调度相关的发展历史和基本原理。多年以来,内核界的黑客们一直着力于寻找既能满足高负载后台任务资源充分利用,又能满足桌面系统良好交互性的调度方法,尽管截至到目前为止仍然没有一个完美的解决方案。本文希望通过介绍调度算